Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Ano de publicação
Tipo de documento
Intervalo de ano
1.
medrxiv; 2021.
Preprint em Inglês | medRxiv | ID: ppzbmed-10.1101.2021.11.15.21266335

RESUMO

ABSTRACT A recent pandemic of SARS-CoV-2 infection has caused severe health problems and substantially restricted social and economic activities. To cope with such an outbreak, the identification of infected individuals with high accuracy is vital. qRT-PCR plays a key role in the diagnosis of SARS-CoV-2 infection. The N protein-coding region is widely analyzed in qRT-PCR for the diagnosis of SARS-CoV-2 infection in Japan. We recently encountered two cases of SARS-CoV-2-positive specimens showing atypical amplification curves in the qRT-PCR. We performed whole-genome sequencing and found that the virus was a Delta-type variant of SARS-CoV-2 with a single nucleotide mutation in the probe-binding site. To evaluate the extent of spread of the variant in the area, we performed whole viral genome sequencing of samples collected from 61 patients infected with SARS-CoV-2 during the same time and in the same area. There were no other cases with the same mutation, indicating that the variant had not spread in the area. Furthermore, we performed phylogenetic analysis with various SARS-CoV-2 sequences deposited in the public database. Hundreds of variants were reported globally, and one in Japan were found to contain the same mutation. Phylogenetic analysis showed that the variant was very close to other Delta variants endemic in Japan but quite far from the variants containing the same mutation reported from outside Japan, suggesting that the variant would have been sporadically generated in some domestic areas. These findings propose two key points: i) mutations in the region used for SARS-CoV-2 qRT-PCR can cause abnormal amplification curves; therefore, the qRT-PCR result should not just be judged in an automated manner, but also manually checked by the examiner to prevent false-negative results, and ii) various mutations can be generated sporadically and unpredictably; therefore, efficient and robust screening systems are needed to promptly monitor the emergence of de novo variants.


Assuntos
COVID-19
2.
biorxiv; 2020.
Preprint em Inglês | bioRxiv | ID: ppzbmed-10.1101.2020.05.26.115923

RESUMO

Severe COVID-19 patients can show respiratory failure, T-cell reduction, and cytokine release syndrome (CRS), which can be fatal in both young and aged patients and is a major concern of the pandemic. However, the pathogenetic mechanisms of CRS in COVID-19 are poorly understood. Here we show single cell-level mechanisms for T-cell dysregulation in severe SARS-CoV-2 infection, and thereby demonstrate the mechanisms underlying T-cell hyperactivation and paralysis in severe COVID-19 patients. By in silico sorting CD4+ T-cells from a single cell RNA-seq dataset, we found that CD4+ T-cells were highly activated and showed unique differentiation pathways in the lung of severe COVID-19 patients. Notably, those T-cells in severe COVID-19 patients highly expressed immunoregulatory receptors and CD25, whilst repressing the expression of the transcription factor FOXP3 and interestingly, both the differentiation of regulatory T-cells (Tregs) and Th17 was inhibited. Meanwhile, highly activated CD4+ T-cells express PD-1 alongside macrophages that express PD-1 ligands in severe patients, suggesting that PD-1-mediated immunoregulation was partially operating. Furthermore, we show that CD25+ hyperactivated T-cells differentiate into multiple helper T-cell lineages, showing multifaceted effector T-cells with Th1 and Th2 characteristics. Lastly, we show that CD4+ T-cells, particularly CD25-expressing hyperactivated T-cells, produce the protease Furin, which facilitates the viral entry of SARS-CoV-2. Collectively, CD4+ T-cells from severe COVID-19 patients are hyperactivated and FOXP3-mediated negative feedback mechanisms are impaired in the lung, while activated CD4+ T-cells continue to promote further viral infection through the production of Furin. Therefore, our study proposes a new model of T-cell hyperactivation and paralysis that drives pulmonary damage, systemic CRS and organ failure in severe COVID-19 patients.


Assuntos
Paralisia , Insuficiência de Múltiplos Órgãos , Pneumopatias , Carcinoma de Células Renais , COVID-19 , Insuficiência Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA